Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 38(7): 591-594, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121878

RESUMO

When a species' last strong foothold occurs on Country, empowering Indigenous-led actions under the collaborative management of culturally significant species is key to species persistence. We examine how Indigenous Australians are using Indigenous knowledge to save the greater bilby, a highly valued species to Indigenous and non-Indigenous Australians.


Assuntos
Marsupiais , Humanos , Animais , Austrália
2.
Ann Bot ; 130(6): 901-916, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36219678

RESUMO

BACKGROUND AND AIMS: Understanding how genetic diversity is distributed and maintained within species is a central tenet of evolutionary and conservation biology, yet is understudied in arid regions of the globe. In temperate, glaciated environments, high genetic diversity in plant species is frequently found in refugial areas, which are often associated with southern non-glaciated landscapes. In arid, unglaciated environments, landscape features providing mesic conditions are likely to be refugia, although our understanding needs more refinement in these biomes. We test whether refugia and nuclear diversity hotspots occur in high-elevation, topographically complex areas for co-distributed shrubs (Petalostylis labicheoides and Indigofera monophylla; Fabaceae) in the ancient, arid Pilbara bioregion of north-western Australia. METHODS: We conducted extensive sampling of the Pilbara (>1400 individuals from 62 widespread populations) to detect patterns in nuclear diversity and structure based on 13-16 microsatellite loci. Evidence of historical refugia was investigated based on patterns of diversity in three non-coding chloroplast (cp) sequence regions for approx. 240 individuals per species. Haplotype relationships were defined with median-joining networks and maximum likelihood phylogenetic trees. KEY RESULTS: We found cpDNA evidence for a high-elevation refugium in P. labicheoides but not for I. monophylla that instead exhibited extraordinary haplotype diversity and evidence for persistence across a widespread area. Nuclear diversity hotspots occurred in, but were not exclusive to, high-elevation locations and extended to adjacent, low-elevation riparian areas in both species. CONCLUSIONS: Phylogeographic refugia in arid environments may occur in high-elevation areas for some species but not all, and may be influenced by species-specific traits: a mesic montane refugium in P. labicheoides could be related to its preference for growth in water-gaining areas, while a lack of such evidence in I. monophylla could be related to maintenance of cpDNA diversity in a large soil seed bank and dynamic evolutionary history. Mesic environments created by the intersection of topographically complex landscapes with riparian zones can be contemporary reservoirs of genetic diversity in arid landscapes.


Assuntos
Refúgio de Vida Selvagem , Filogenia , Filogeografia , DNA de Cloroplastos/genética , Haplótipos , Variação Genética
3.
Ecol Evol ; 12(7): e9052, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813908

RESUMO

Widespread plant species are expected to maintain genetic diversity and gene flow via pollen and seed dispersal. Stature is a key life history trait that affects seed and potentially pollen dispersal, with limited stature associated with limited dispersal and greater genetic differentiation. We sampled Hill's tabletop wattle (Acacia hilliana) and curry wattle (Acacia spondylophylla), two co-distributed, widespread, Acacia shrubs of low stature, across the arid Pilbara region of north-western Australia. Using chloroplast sequence and nuclear microsatellite data we evaluated patterns of population genetic and phylogeographic diversity and structure, demographic signals, ratios of pollen to seed dispersal, evidence for historical refugia, and association between elevation and diversity. Results showed strong phylogeographic (chloroplast, G ST = 0.831 and 0.898 for A. hilliana and A. spondylophylla, respectively) and contemporary (nuclear, F ST = 0.260 and 0.349 for A. hilliana and A. spondylophylla, respectively) genetic structure in both species. This indicates limited genetic connectivity via seed and pollen dispersal associated with Acacia species of small stature compared to taller tree and shrub acacias across the Pilbara bioregion. This effect of stature on genetic structure is superimposed on moderate levels of genetic diversity that were expected based on widespread ranges (haplotype diversity h = 25 and 12; nuclear diversity He = 0.60 and 0.47 for A. hilliana and A. spondylophylla, respectively). Contemporary genetic structure was congruent at the greater landscape scale, especially in terms of strong genetic differentiation among geographically disjunct populations in less elevated areas. Measures of diversity and connectivity were associated with traits of greater geographic population proximity, population density, population size, and greater individual longevity, and some evidence for range expansion in A. hilliana. Results illustrate that low stature is associated with limited dispersal and greater patterns of genetic differentiation for congenerics in a common landscape and highlight the complex influence of taxon-specific life history and ecological traits to seed and pollen dispersal.

4.
Genes (Basel) ; 11(8)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751318

RESUMO

Phylogeographic studies can be used as a tool to understand the evolutionary history of a landscape, including the major drivers of species distributions and diversity. Extensive research has been conducted on phylogeographic patterns of species found in northern hemisphere landscapes that were affected by glaciations, yet the body of literature for older, unaffected landscapes is still underrepresented. The Pilbara region of north-western Australia is an ancient and vast landscape that is topographically complex, consisting of plateaus, gorges, valleys, and ranges, and experiences extreme meteorological phenomena including seasonal cyclonic activity. These features are expected to influence patterns of genetic structuring throughout the landscape either by promoting or restricting the movement of pollen and seed. Whilst a growing body of literature exists for the fauna endemic to this region, less is known about the forces shaping the evolution of plant taxa. In this study we investigate the phylogeography of two iconic Pilbara tree species, the Hamersley Bloodwood (Corymbia hamersleyana) and Western Gidgee (Acacia pruinocarpa), by assessing patterns of variation and structure in several chloroplast DNA regions and nuclear microsatellite loci developed for each species. Gene flow was found to be extensive in both taxa and there was evidence of long-distance seed dispersal across the region (pollen to seed ratios of 6.67 and 2.96 for C. hamersleyana and A. pruinocarpa, respectively), which may result from flooding and strong wind gusts associated with extreme cyclonic activity. Both species possessed high levels of cpDNA genetic diversity in comparison to those from formerly glaciated landscapes (C. hamersleyana = 14 haplotypes, A. pruinocarpa = 37 haplotypes) and showed evidence of deep lineage diversification occurring from the late Miocene, a time of intensifying aridity in this landscape that appears to be a critical driver of evolution in Pilbara taxa. In contrast to another study, we did not find evidence for topographic features acting as refugia for the widely sampled C. hamersleyana.


Assuntos
Acacia/genética , DNA de Cloroplastos/genética , Fluxo Gênico , Variação Genética , Repetições de Microssatélites , Myrtaceae/genética , Árvores/genética , Acacia/crescimento & desenvolvimento , DNA de Cloroplastos/análise , Myrtaceae/crescimento & desenvolvimento , Filogeografia , Árvores/crescimento & desenvolvimento , Austrália Ocidental
5.
Plant Methods ; 16: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31911810

RESUMO

BACKGROUND: Herbaria are valuable sources of extensive curated plant material that are now accessible to genetic studies because of advances in high-throughput, next-generation sequencing methods. As an applied assessment of large-scale recovery of plastid and ribosomal genome sequences from herbarium material for plant identification and phylogenomics, we sequenced 672 samples covering 21 families, 142 genera and 530 named and proposed named species. We explored the impact of parameters such as sample age, DNA concentration and quality, read depth and fragment length on plastid assembly error. We also tested the efficacy of DNA sequence information for identifying plant samples using 45 specimens recently collected in the Pilbara. RESULTS: Genome skimming was effective at producing genomic information at large scale. Substantial sequence information on the chloroplast genome was obtained from 96.1% of samples, and complete or near-complete sequences of the nuclear ribosomal RNA gene repeat were obtained from 93.3% of samples. We were able to extract sequences for the core DNA barcode regions rbcL and matK from 96 to 93.3% of samples, respectively. Read quality and DNA fragment length had significant effects on sequencing outcomes and error correction of reads proved essential. Assembly problems were specific to certain taxa with low GC and high repeat content (Goodenia, Scaevola, Cyperus, Bulbostylis, Fimbristylis) suggesting biological rather than technical explanations. The structure of related genomes was needed to guide the assembly of repeats that exceeded the read length. DNA-based matching proved highly effective and showed that the efficacy for species identification declined in the order cpDNA >> rDNA > matK >> rbcL. CONCLUSIONS: We showed that a large-scale approach to genome sequencing using herbarium specimens produces high-quality complete cpDNA and rDNA sequences as a source of data for DNA barcoding and phylogenomics.

6.
Ecol Evol ; 7(13): 4607-4619, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28690791

RESUMO

Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience.

7.
PLoS One ; 12(2): e0172977, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28245232

RESUMO

Species turnover and its components related to replacement and nestedness form a significant element of diversity that is historically poorly accounted for in conservation planning. To inform biodiversity conservation and contribute to a broader understanding of patterns in species turnover, we undertook a floristic survey of 160 plots along an 870 km transect across oligotrophic sandplains, extending from the mesic south coast to the arid interior of south-western Australia. A nested survey design was employed to sample distances along the transect as evenly as possible. Species turnover was correlated with geographic distance at both regional and local scales, consistent with dispersal limitation being a significant driver of species turnover. When controlled for species richness, species replacement was found to be the dominant component of species turnover and was uniformly high across the transect, uncorrelated with either climatic or edaphic factors. This high replacement rate, well documented in the mega-diverse south-west, appears to also be a consistent feature of arid zone vegetation systems despite a decrease in overall species richness. Species turnover increased rapidly with increasing extent along the transect reaching an asymptote at ca. 50 km. These findings are consistent with earlier work in sandplain and mallee vegetation in the south-west and suggests reserve based conservation strategies are unlikely to be practicable in the south-western Australia sandplains when communities are defined by species incidence rather than dominance.


Assuntos
Biodiversidade , Austrália , Clima , Geografia , Austrália do Sul , Austrália Ocidental
8.
Conserv Biol ; 29(2): 525-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25362843

RESUMO

Conservation decision tools based on cost-effectiveness analysis are used to assess threat management strategies for improving species persistence. These approaches rank alternative strategies by their benefit to cost ratio but may fail to identify the optimal sets of strategies to implement under limited budgets because they do not account for redundancies. We devised a multiobjective optimization approach in which the complementarity principle is applied to identify the sets of threat management strategies that protect the most species for any budget. We used our approach to prioritize threat management strategies for 53 species of conservation concern in the Pilbara, Australia. We followed a structured elicitation approach to collect information on the benefits and costs of implementing 17 different conservation strategies during a 3-day workshop with 49 stakeholders and experts in the biodiversity, conservation, and management of the Pilbara. We compared the performance of our complementarity priority threat management approach with a current cost-effectiveness ranking approach. A complementary set of 3 strategies: domestic herbivore management, fire management and research, and sanctuaries provided all species with >50% chance of persistence for $4.7 million/year over 20 years. Achieving the same result cost almost twice as much ($9.71 million/year) when strategies were selected by their cost-effectiveness ranks alone. Our results show that complementarity of management benefits has the potential to double the impact of priority threat management approaches.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...